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A B S T R A C T  R E S U M E  

The lattice Boltzmann method is a promising 
approach for modeling single and multicomponent fluid 
flow in complex geometries like porous materials. Here, 
we review some of our previous work and discuss some 
recent developments concerning fluid flow in multiple 
pore size materials. After presenting some simple test cases 
to validate the model, results fiom large scale simulations 
of single and multi-component fluid flow through dg- 
tized Fontainebleau sandstone, generated by X-Ray 
microtomography, are given. Reasonably good agreement 
was found when compared to experimentally determined 
values of permeability for sirmlar rocks. Finally, modifica- 
tion of the lattice Boltzmann equations, to describe flow 
in microporous materials, is described. The potential for 
modeling flows in other microstructures of interest to 
concrete technology will be discussed. 

Ld mdthode Lattice Boltzmann est urn approcke d grand poten- 
tiel pour modeler l’dcoulement h travers une gdonzdtrie complexe, 
comme celle des matdriaux poreux, d’un fluide simple ou h compo- 
sants multiples. Ici, nous passerons en revue une partie du travail 
compl4td et nous discuterons les ddveloppements rdcents concernant 
l’dcoulement d’unfluide dans un matdriau poreux ayant une large 
distribution de la dimension des pores. Nous pr4senterons, d’abord, 
des us simples pour valia’er le modde et, ensuite, des cas plus com- 
plexes incluant des 4coulements defluides simples ou d composants 
multiples a h  tine stvtccture digitaliske d’un gr2s de Fontainebleau. 
La structure du gds fut  gdndrde par micrographie d Rayon-X. Les 
hdtats  du modde ont une bonne corrdlation aver la mesure de per- 
mdabilitd determinde sur des pierres similaires. Enfin, une modijka- 
tion des dquations de la lattice Boltzmann permet de ddcrire l’icoule- 
ment d travers un matdriau micro-poreux. Nous discuterons a m i  la 
possibilitd de modeler l’dcoulement d’un jluide h travers d’autres 
micro-structures inspirdes de la technologie du &ton. 

1. INTRODUCTION 

Diffusive and moisture transport in porous materials 
like ceramics, concrete, soils, and rocks plays an impor- 
tant role in many environmental and technological 
processes [ 11. For example, the service life and durability 
of concrete can depend on the rate of ingress of chloride 
ions while the diffusion of carbon dioxide controls the 
rate of carbonation of the cementitious matrix. Further, 
such processes depend on the degree of saturation of the 
porous medium. The detailed simulation of such trans- 
port phenomena, subject to varying environmental con- 
ditions or saturation, is a great challenge because of the 
difficulty of modeling fluid flow in random pore 
geometries and the proper accounting of the interfacial 

boundary conditions. In this paper, we will review [2] 
some recent advances in the modeling of fluid flow in 
complex geometries using the discrete Boltzmann meth- 
ods. Discrete or lattice Boltzmann methods (LB) have 
emerged as a powerful technique for the computational 
modeling of a wide variety of complex fluid flow prob- 
lems including single and multiphase flow in complex 
geometries. These methods naturally accommodate a 
variety of boundary conditions such as the pressure drop 
across the interface between two fluids and wetting 
effects at a fluid-solid interface. Since the LB method 
can be derived fiom the Boltzmann equation, its physical 
underpinnings can be understood from a fundamental 
point of view. Indeed, discrete Boltzmann methods serve 
as an ideal mesoscopic approach that bridges microscopic 
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phenomena with the continuum macroscopic equations. 
Further, it can be directly implemented as a numerical 
method to model the time evolution of such systems. 
Finally, the LB method generally needs nearest neighbor 
information, at most, so is well suited to take advantage 
of parallel computers. 

An outline of the paper goes as follows. After a brief 
review of the theory of the LB method, results are pre- 
sented to validate predictions of fluid flow through a few 
simple pore geometries.Large scale simulations of fluid 
flow through a Fontainebleau sandstone microstructure, 
generated by X-ray microtomography, will then be pre- 
sented. Single phase flow calculations were carried out 
on systems containing 5103 computational elements. We 
also calculate relative permeability curves as a function of 
fluid saturation and driving force. The next section 
describes solution of the Brinkman equation using a lat- 
tice Boltzmann based approach. Finally, a comparison of 
the performance of such codes on different computa- 
tional platforms is presented. 

2. A LAllICE BOLTZMANN MODEL OF MUL- 
TICOMPONENT FLU IDS 

The LB method of modeling fluid dynamics is actually 
a family [3] of models with varylng degrees of faithhlness 
to the properties of real liquids. These methods are cur- 
rently in a state of evolution as the models become better 
understood and are corrected for various deficiencies. 
The approach of LB is to consider a typical volume ele- 
ment of fluid to be composed of a collection of particles 
that are represented in terms of a particle velocity distribu- 
tion hnction at each point in space. The particle velocity 
hstribution, n: (x, t ) ,  is the number density of particles at 
node x, time t, with velocity, ea, where (u=l, ..J) indicates 
the velocity direction and superscript i labels the fluid 
component. The time is counted in discrete time steps, 
and the fluid particles can colhde with each other as they 
move under applied forces. 

For this paper we use the D3Q19 (3 Dimensional lat- 
tice with b=19) lattice [4, 51. The microscopic velocity, 
e,, equals all permutations of (kl, kl, 0) for 1 5 u 5 12, 
(kl, 0, 0) for 13 I u I 18, and (0, 0, 0) for u = 19. The 
units of e, are the lattice constant divided by the time 
step. Macroscopic quantities such as the density, n,(x, t ) ,  
and the fluid velocity, ui, of each fluid component, i, are 
obtained by taking suitable moment sums of ni(x, t). 
Note that while the velocity distribution function is 
defined only over a discrete set of velocities, the actual 
macroscopic velocity field of the fluid is continuous. 

The time evolution of the particle velocity distribu- 
tion hnction satisfies the following LB equation: 

nb(x+ea,t+1)-n6(X,t)= a:(x,t)-g: (1) 

where Qf, is the collision operator representing the 
rate of change of the particle distribution due to colli- 
sions andgi is body forcing term. The collision operator 

is greatly simplified by use of the single time relaxation 
Approximation [6, 71 

where ndied(x, t )  is the equilibrium distribution at (x, t )  
and 'ci is the relaxation time that controls the rate of 
approach to equilibrium. The equilibrium distribution 
can be represented in the following form for particles of 
each type [5,8]: 

(4) 

where a 
p f l l ( x ) / T  (5) 

V =  

S is the number of fluid component, mi is the molec- 
ular mass of the ith component, ta=1/36 for 1 I u I 12, 
t,=1/18 for 13 I a I 18 and tI9=1/3. The free parameter do 
can be related to an effective temperature, T, for the sys- 
tem by the following moment of the equilibrium distrib- 
ution: 

Cayz:eq)(x,t)(e, - vj2 

3n'  x,t 
T( x, t )  = 

which results in T=(l-d0)/2 (we take units such that the 
Boltzmann constant k,=l). 

The above formalism leads to a velocity field that is a 
solution of the Navier-Stokes [7] equation with the 

kinematic viscosity, v = $( El(iz, - i) where c, is the 

concentration of each component [8]. 

Phase Separation of Fluids 
There are a variety of approaches to modeling the 

phase separation of fluids [3, 91. In the Shan-Chen 

model, a force, g ( x ) ,  between the two fluids is intro- 

duced that effectively perturbs the equilibrium velocity 
[4,5] for each fluid so that they have a tendency to phase 
separate: 

dt  

(7) 

where v' is the new velocity used in Equations (3) and 
(4). A simple forcing that depends on the density of each 
fluid, is as follows [4, 51: 

with G$= 2G for leal = 1; G$= G for leal = 42; and 
Gq,,= 0 for i = i'. G is a constant that controls the 
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strength of the interaction. Clearly, the forcing term is 
related to the density gradient of the fluid. It has been 
shown that the above forcing term can drive the phase 
separation process and naturally produce an interfacial 
surface tension effect consistent with the Laplace law 
boundary condition [5]. 

Phase separation of fluid can also be modeled by 

directly incorporating the force, -(x), dP’ into the body 
dt 

force term. First note that in the continuum Boltzmann 
equation, the body force term is written a.V,n(x, e), 
where a is an acceleration field due to a body force. A 
representation [lo] of this body force term to second 
order in Hermite polynomials, in the discrete velocity 
space of the D3Q19 lattice is 

To first order, the body force term is written as 
ga=-3tjn(x)e, .a. 

In both models, phase separation takes place when 
the mutual diffusivity of the binary mixture becomes 
negative. An analytical expression for the mutual difh- 
sivity has been determined in a previous work [8]. For 
the case of a critical composition, the condition for the 
system studied to undergo phase separation is 

T 
G212(n!+n‘). 

3. I M PLE M E NTATl 0 N 

The approach to implementation of the algorithm is 
relatively straightforward. At each active site is the neces- 
sary velocity and mass data for each fluid component. 
Over the course of an iteration we visit each cell in the 
data volume and calculate the distribution ( Y Z ~ )  of each 
fluid component to be streamed to neighboring cells. 
New mass and velocity values are accumulated at each 
cell as its neighbors make their contributions. The most 
notable aspects of the implementation were our tactics 
for managmg the large amounts of memory required by 
the algorithm, and the adaptation of the code for use in 
parallel computing environments. 

4. MEMORY OPTIMIZATIONS 

Experience with the implementation of related algo- 
rithms indicated that the memory required for modeling 
large systems would be prohibitive. We therefore looked 
for ways to conserve and reduce memory usage. There 
are several tactics that we used in this implementation: 

Store data only at the active sites. 
This is accomplished in the C implementation by repre- 
senting the medium as a three dimensional array of 
pointers. At each active site, the pointer references a 
data structure with the necessary velocity and mass data. 

At the inactive sites, the pointer is NULL; no additional 
storage is required at the inactive sites. For a low poros- 
ity medium, the memory savings are very large. 

Assume that T = 1. 
This assumption simplifies evaluation of Equations (1)- 
(5) such that at each active site we need only store the 
density of each fluid component, and a single velocity 
vector. Without this assumption, we must store all 19 
values associated with the velocity distribution, nj, at 
each site. 1 

9 Only one copy of the data volume is stored. 
Rather than keeping an entire second data volume in 
which to accumulate the newly calculated data, we 
exploit the fact that the algorithm only uses nearest 
neighbors at each site. Thus we only need an additional 
buffer of three planes of data at any one time. 

Assuming that floating point numbers and C point- 
ers each take four bytes, these memory optimizations 
yield savings of over 94% of memory usage in the one 
component case for systems of useful sizes. The mem- 
ory savings are even greater when more fluid compo- 
nents are used or when larger floating point representa- 
tions are used. 

5. PARALLELIZATION 

The amount of computation and memory required 
for a large system suggested that it would be advanta- 
geous to adapt the implementation so that a single prob- 
lem could be run in parallel across a collection of proces- 
sors. The nearest-neighbor dependence of the algorithm 
also suggested that parallelization would be straightfor- 
ward and would yeld substantial benefits. Parallelization 
enables us to run larger systems by distributing the 
memory requirements across many machines, and gives 
us faster performance by distributing the computation. 

We implemented the parallel version of the algo- 
rithm using the Message Passing Interface (MPI) [ll]. 
This is an industry-standard library of routines for coor- 
dinating execution and communicating between 
processes in a parallel computing environment. The 
parallelization was accomplished within a simple Single 
Program Multiple Data (SPMD) model. The data vol- 
ume is divided into spatially contiguous blocks along the 
Z axis; multiple copies of the same program run simulta- 
neously, each operating on its block of data. 

Each copy of the program runs as an independent 
process and typically each process runs on its own 
processor. 

At the end of each iteration, data for the planes that 
lie on the boundaries between blocks are passed between 
the appropriate processes and the iteration is completed. 
The periodic boundary condition is handled transpar- 
ently; the process handling the “top” plane of data vol- 
ume simply exchanges data with the process handling 
the “bottom” plane of the data volume. 
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30 1 - P r e d i c t e d  

Gap b e t w e e n  p l a t e s  

Fig. 1 - Flow through parallel plates. The permeability, k, is in 
units of lattice spacing squared, while the gap between plates is in 
units of lattice spacing. 

6. NUMERICAL TESTS 

Several numerical tests were carried out to veri@ our 
algorithm. Results from two cases, fluid flow between 
parallel plates and through an overlapping sphere model, 
are gven below. For both cases we determined the fluid 
permeability, k, as defined by Darcy's law [ l ] ,  

( 1 ? )  = - i ( V P ) ,  where ( c )  is the average flow rate, V P is 

the average pressure gradient and p is the fluid viscosity. 
Fig. 1 shows the permeabdity, in units of the lattice spacing 
squared, as a function of the distance between parallel 
plates. Clearly, there is excellent agreement between the 
simulation and theoretical prediction. Surprisingly, very 
accurate results were obtained even for the case of a one 
node wide channel. Since permeability depends on the 
average flow or net flm rate of fluid, we conclude that the 
LB method accurately determines the net flux across a 
voxel surface, not the velocity at a point. Hence, resolving 
the actual local flow field at a point would require more 
nodes. We next consider the permeabhty of the pore space 
around a simple cubic array of solid spheres that are atlowed 
to overlap for large enough r a d u  (i.e. when the solid frac- 
tion, c, exceeds c = 0.5236). In Fig. 2, we compare our sim- 
ulation data with that of Chapman and Higdon [12], whch 
is based on the numerical solution of coefficients of a har- 
monic expansion that satisfies the Stokes equations. Note 
that our calculations were performed on a relatively small 
643 system. Again, agreement is very good, especially gven 
that we used dgitized spheres, while Chapman and Higdon 
used smooth spheres. 

7. COMPARISON WITH EXPERIMENTAL DATA 

We next determined the permeability of several 
microtomography-based images of Fontainebleau sand- 
stone. Fig. 3 depicts portions of two of these sandstone 
images. The resolution was 5.72 pm per lattice spacing 

0 C h a p m a n  a n d  H igdon  C a l c u l a t i o n  

0.01 

0.00 
o ' o * ~  , ' , ' ,  ' :@@M B Y  B , @  , 

0.50 0.75 1 .oo 0.00 0.25 
C 

Fig .  2 - Flow through spheres centered on a simple cubic lattice. 
The permeability is normalized by the square of the distance, d, 
between the sphere centers. 

and data sets were 5103 voxels in size. A mirror image 
boundary condition was applied along directions per- 
pendicular to the applied force. The porous medium was 
made periodic in the flow direction by creating its mir- 
ror image at the inlet. The numerical calculations were 
carried out on a 1020 x 510 x 510 system for all but the 
lowest porosity system. We found that at  the lowest 
porosity (7.5%) there were not enough nodes across the 
pores to produce a reliable flow field. So for this case the 
permeability was determined from a 2563 piece of the 
sandstone image that was mapped to a 5123 image, and 
calculations were performed on a 1024 x 512 x 512 sys- 
tem. In addition to requiring sufficient resolution, 
another potential source of error is not having precise 
knowledge of the location of the pore/solid interface. 
For example, an error of half a lattice spacing could be 
significant when modeling flow in narrow channels like 
that in the low porosity system. Fig. 4 shows the com- 
puted permeability compared to experimental data [ 131. 
Clearly there is good agreement, especially at the higher 
porosities. 

8. RELATIVE PERMEABILITY 

We next present a sample calculation of the relative 
permeability for the 22% porosity Fontainebleau sand- 
stone. In this case, the pore space is filled with two flu- 
ids. One fluid preferentially wets the solid surface and 
the second fluid is non-wetting. The degree of satura- 
tion, 0, is Vy/Vp, where the V, is the volume of the 
wetting phase in the pore space and Vp is the volume of 
the pore space. Although there is debate as to the cor- 
rect formulation of the macroscopic two phase flow 
equations [ 141, we use the following empirical relation to 
describe the response of a multiphase fluid system to an 
external driving force: 
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Fig. 3 - 64 x 64 portions of the Fontainebleau sandstone media. On the left is the 7.5% porosity medium, on the right is the 22% poros- 
ity medium. The solid matrix is made transparent to reveal the pore space (grey shaded region). 

1 .  

- 5 l ' I ) I ~ I ' I ~  
0 5 10  15  20 2 5  30 

P o r o s i t y  

Fig. 4 - Measured (line) and modeled (diamonds) permeabilities 
of Fontainebleau sandstone medium. 

v ,  - = --VI? K2, - - K z  VP, 
Vl P2 

Here the Ki are the components of a permeability 
tensor and the applied pressure gradient on each fluid 
component V Pi is from a simple body force, V P = pg, 
where g is an acceleration constant. The average velocity 
of each fluid component is given by 51 and 52. The 
forcing can be applied to each phase separately allowing 
determination of the off-diagonal terms in the perme- 
ability tensor. The viscosity pi is the same for both fluids. 
Relative permeability data is usually presented in terms 

of constant capillary number, C, = -, where y is the 

interfacial surface tension. For our body force driven 
fluids, we can define an effective capillary number, C *, , 
by replacing v with the Darcy velocity so that 

CLV 

Y 

Fig. 5 - Relative permeabilities of 22 % porosity Fontainebleau 
sandstone versus wetting fluid saturation, 0, The solid and 
dashed lines correspond to C: = 7.5 x 
respectively. The lower curves correspond to the offdiagonal 
elements of the permeability tensor with the * denoting the case 
where the nonwetting fluid is driven. 

and C: = 7.5 x 

p ' V >  c:=--- - kpg. Fig. 5 shows the relative permeabil- 

ity of the @ =22% rock for the cases of C: = 7.5 x 
and 7.5 x 10-5. 

Y Y 

9. APPLICATION TO CEMENT BASED MATE- 
RIALS 

LB algorithms are applicable to a wide variety of 
microstructures associated with cement based materials 
including cement paste, mortar, and concrete. For 
example, we have studied fluid flow in fractured mor- 
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Fig. 6 - Single slice from an 
X-Ray microtomography 
based image of a fractured 
mortar. The image on the left 
is based on the original data 
set. The image on the right 
was produced by processing 
the original data set to distin- 
guish between pore (black) 
and solid (white). The fluid 
flow was calculated through- 
out the pore region. The X- 
ray microtomography image 
was obtained by Eric Landis 
using the National 
Synchrotron Light Source, 
Brookhaven National 
Laboratory. 

tars. A series ofX-ray microtomography based images of 
fractured mortars as a function of applied strain have 
been obtained by Landis and Keane 1151. Fig 6 shows a 

ity of the fluid but only a parameter that allows for 
matching of the shear stress boundary condition across 
the free-fluidlporous medium interface. That is, 

typical fracture image. The image used-in t& flow sim- 
ulation was 2003 voxels in size with lattice units equal to 
6.0 wz. For this system, we found k = 1.35 . lo-" 
in2. Clearly, given the very low permeability of the 
uncracked mortar ( k  = m2),  nearly all fluid flow 
should be through the crack. 

Solution of the Brinkman equation: Multiple scale 
porous media 

Modeling fluid flow in porous heterogeneous mate- 
rials with more than one typical pore size (e.g. concrete, 
microporous rocks and fractured materials) presents a 
challenge because it is difficult to simultaneously resolve 
all the microstructural features of the porous medium 
that are at different length scales. One possible approach 
is to divide the porous medium into two regons: (1) the 
larger pores and (2) homogeneous regions of smaller 
pores. In the larger pores, the Stokes' equations for 
incompressible flow hold: 

v p = p v  

(13) v * v = o  
where p is the pressure, v is the fluid velocity and p is 
the fluid viscosity. Regions with the smaller pores are 
treated as a permeable medium and flow is described by 
Darcy's law. The two boundary conditions to be satisfied 
at the pore/permeable medium interface are continuity 
of the fluid velocity and the shear stress [16, 171. Darcy's 
law alone is not sufficient to satisfj these boundary con- 
ditions. The Brinkman equation [17] is a generalization 
of Darcy's law that facilitates the matching of boundary 
conditions at an interface between the larger pores and 
the permeable medium. Brinkman's equation is 

(vp) = -% + p.V"v) 
k (14) 

where v is the fluid velocity, p is the fluid viscosity, 
and pe is an effective viscosity parameter. The so-called 
effective viscosity should not be thought of as the viscos- 

pd(o ) /dy  ( y = o + ) = p , d ( v ) / d y  ( y = O - )  where y = 0 
specifies the location of the interface for this example. 
The + and - refer to regions in the free-fluid and porous 
medium, respectively. 

Although the Brinkman equation is semi-empirical 
in nature, it has been validated by detailed numerical 
solution of the Stokes' equations in regions near the 
interface between dissimilar regons [ 181. 

Numerical solution of the Brinkman equation by 
more traditional computational methods (e.g. finite dif- 
ference and finite element) is certainly possible. 
However, a recent lattice Boltzmann (LB) based model 
by Spaid and Phelan [19], along with recent improve- 
ments [20], has proven to be a simple and computation- 
ally efficient method to numerically approximate fluid 
flow described by the Brinkman equation. 

equation, a dissipative forcing F = - E  is used. 

Originally, this forcing was incorporated into a LB 
model, normally used to approximate the Navier Stokes 
equations, by introducing a velocity shift, A v = z F / n, 
(z is a relaxation parameter and n is the density) in the 
Boltzmann equilibrium distribution according to the 
method of Shan and Chen [4]. However it is well 
known that this approach will produce errors of order 
x2F2 in the pressure tensor [20]. Such errors can have a 
significant impact on the fluid dynamics of such systems. 
Hence, it can be advantageous to instead apply the force 
in the body force term. 

To first validate this model, a simple Couette flow 
geometry was used (see Fig. 7). Starting with a parallel 
plate geometry, a permeable medium is positioned such 
that there is a gap between the permeable medium and 
the upper plate. The upper plate is given a velocity I/.? to 
the right. Analytic solution of the Brinkman equation 
predicts a linear velocity profile in the gap and an expo- 
nentially decaying velocity profile in the porous 
medium. The rate of decay depends on the value of 

To produce flow consistent with the Brinkman 

k 
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Processors 

O M  o m  0.15 0.w 
<V> 

# Fluid Components 

1 2 3 

Fig. 7 -Velocity field of a sheared system next to a porous 
medium. The filled triangles and circles represent data from the 
lattice Boltzmann simulation using (pc ! p = 1 and pe / p = 4, 
respectively). The solid lines are analytic solutions of the 
Brinkman equation. The region below the dashed line y = 34.5 
(in units of lattice spacing) corresponds to a porous medium. The 
moving wall is at y = 44. 

1 

2 

4 

8 

E [16]. In Fig. 7, velocity profiles are compared for 

the case of I*.= 4 and the assumption of . The 

solid line is the analytic solution of the Brinkman solu- 
tion. Clearly, there is excellent agreement between sim- 
ulation and theory and there can be a considerable 

change in the velocity profile when I*. ir 1 . In addition, 

the lattice Boltzmann method also does a reasonably 
good job capturing the discontinuity of the gradient of 
the velocity field at the fiee-fluid/porous medium inter- 

face for the case of -L = 4 .  Note that this is achieved 

without direct incorporation of the stress boundary con- 
dition in the simulation model. 

For this test case, k = 1/11 in units of lattice spacing 
squared. Such a choice of k, ignoring tortuosity effects, 
corresponds to a porous medium with a typical pore size 
of order a lattice spacing as can be seen by noting that the 
permeability associated with a cylindrical tube is k = r2/8 
where r is the tube radius. 

We next consider solution of the Brinkman equation 
using the Fontainebleau sandstone, described earlier, as a 
porous medium where the solid phase is now assigned a 
permeability k,. Although this may not be the case for 
the origmal rock, the sandstone image serves as a conve- 
nient "random" pore structure to use. Four different 
permeable media were used with porosity ranging from 
about 7% to 40%. Here, the porosity refers to the origi- 
nal pore structure. In Fig. 8, we plot the bulk perme- 
ability, k,, of the overall system vs k,: Clearly, k, increases 
with k,. At lower values of k,, the higher porosity system 
appears to be less sensitive to k, as a result of the larger 

P I.1 

I.1 

P 
P 

14.70 24.70 33.27 

7.39 12.22 16.69 

3.80 6.23 8.57 

2.14 3.48 4.68 

2 

1 

0 

G-l 
- 2  

A I - 4  -5 """"' - 4 """"' - 3  rr7t - 2  -1 ' ' ' 1 ' ' ' ' '  0 """"1 1 

Fig. 8 -Bulk permeability, kb vs permeability assigned to the nor- 
mally solid portion of the microstructure. The curves (top to bot- 
tom) correspond to microstructres whose initial porosity was 40% 
(squares), 22.5% (Xs), 13.0% (circles), and 7.5% (triangles). The 
isolated data points on the left represent the case where k, = 0. 

pores carrymg most of the flow. Fluid flow in the lower 
porosity systems are much more influenced by k,, as a 
larger fiaction of the system is composed of the perme- 
able medium. It should also be pointed out that an alter- 
nate version [21] of the lattice Boltzmann method was 
used to determine results for k, < 0.1 as the above 
described model is unstable in this regme. The instabil- 
ity is a result of the fixed time step used in the LB 
method. The alternate version allows for introducing 
smaller time steps so that the instability is avoided. The 
reader is referred to [all for more details. 

10. PERFORMANCE RESULTS 

We ran a series of timing tests in an effort to under- 
stand how performance of our implementation scales on 
different computer architectures. We have tested on an 
SGI Onyx with 12 RlOOOO processors running at 196 
MHz, and an IBM SP2 with 37 RS/6000 processors, 
most running at 66 MHz. The same code and the same 
cases were run on the two systems. The results are pre- 
sented in Tables 1 and 2. The performance reported was 
somewhat affected by other jobs that were running at 
the same time that the tests were being run, although 
efforts were made to minimize this effect. 

I 

Table 1 - Execution times in seconds for one iteration 
on the SGI Onyx 
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These data closely agree with a very simple model 
describing performance: T = P/N + S, where T is the 
total time for a single iteration, P is the time for the par- 
allelizable computation, S is the time for the non-paral- 
lelizable computation, and N is the number of proces- 
sors. The parallelizable computation is that portion of 
the processing that can be effectively distributed across 
the processors. The non-parallelizable computation 
includes processing that cannot be distributed; this 
includes time for inter-process communication as well as 

computation that must be performed either on a single 
processor, or must be done identically on all processors. 

For example, the two-component fluid performance 
data for the SGI Onyx closely match this formula: T = 
4.78 + 487.26/N s, where N is the number of processors. 
Similarly, the timings for the two component runs on 
the IBM SP2 closely match: T = 41.67 + 1198.45/N s. 
Formulae for the other cases are easily derived. Figs. 9 
and 10 present these results graphically. 

Much of the difference between the performance of 
these two systems is likely due simply to the relative 
computational speeds of each processor. But the differ- 
ence in the serial overhead (4.78 s on the SGI versus 
41.67 s on the IBM), is most likely due to the different 
memory architectures of the two systems. The SGI 
Onyx uses a Non-Uniform Memory Access (NUMA) 
architecture that enables processes to pass data to one 
another through shared memory. However, on the IBM 
SP2 no memory is shared and data must be transferred 
over an external high-speed network. Thus the over- 
head for message passing on the SGI Onyx is consider- 
ably lower than that on the IBM SP2. 

The time for the parallelizable portion of the code is 
expected to be in proportion to the number of active 
sites, which depends on the porosity and the size of the 
volume. But the time for the non-parallelizable portion 
of the code is likely to be dominated by the inter-process 
communication. Assuming that communication time is 
roughly proportional to the amount of data transferred, 
the communication time should be proportional to the 
number of active sites on an XY plane. 

So as we process larger systems, the time for the paral- 
lelizable portion of the code should increase proportion- 
ally with the cube of the linear size of the system, while 
the non-parallelizable portion should increase with the 
square of the linear size of the system. Ths means that for 
larger systems, a larger proportion of the time is in the 
parallelizable computation, and greater benefits can be 
derived &om running on multiple processors. 

These performance data gwe us a general idea of how 
long it takes to get practical results for real-world prob- 
lems on the computing platforms tested. For example, a 
typical case requires about 10000 iterations to converge. 
So from the performance described above, a one-compo- 
nent run of the sample size and porosity (22%) described 
above w d  take about 41 h on one processor on an SGI 
Onyx. On  four processors, the same run will take 
approximately 10.6 h. Approximate times for other sizes 
and porosities are easily calculated &om the data above. 

11. CONCLUSIONS 

Lattice Boltzmann methods for simulating fluid flow 
in complex geometries have developed rapidly in recent 
years. The LB method produces accurate flows and can 
accommodate a variety of boundary conditions associ- 
ated with fluid-fluid and fluid-solid interactions. With 
the advent of large memory/parallel workstations (or 
Linux clusters), computations on fairly large systems that 
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were considered beyond the reach of even some 
“super”computers from a decade ago can now be con- 
sidered routine. We are clearly in a good position to 
study fluid flow in a variety of microstructures relevant 
to concrete technology. 
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